About SnF \mathbf{F}_{2} Stannous Fluoride. II. Crystal Structure of $\boldsymbol{\beta}$ - and $\boldsymbol{\gamma} \mathbf{- S n F} \mathbf{F}_{2}$

G. DENES, J. PANNETIER, AND J. LUCAS
Université de Rennes-Beaulieu, Laboratoire de Chimie Minérale D, Laboratoire Associé au CNRS No. 254, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Received March 6, 1978; in revised form March 20, 1979

Abstract

Two new structural modifications (β and γ) of SnF_{2} have been prepared and their structures refined from X-ray powder data by analogy with high- and low-pressure TeO_{2}. Both structures are described and discussed using Galy's and Brown's models. Topological relationships to rutile and cristobalite structures are outlined.

Introduction

The crystal chemistry and phase transitions of the $M F_{2}$ fluorides have been investigated by several authors. These compounds crystallize in the fluorite-type structure for the largest cations and in the rutile type for the $3 d$ transition metals; BeF_{2} and $\alpha-\mathrm{PbF}_{2}$ present respectively the SiO_{2} and PbCl_{2}-type structures. However, very few studies have been devoted to either SnF_{2} or GeF_{2}, although their position in the middle of the IVB column gives them intermediate properties between covalent (C, Si) and ionic (Pb) fluorides; moreover, the presence of a lone pair on the divalent cation leads to strong distortions of the coordination polyhedra.
Recent investigations of the crystal structure (1) and crystal chemistry (2) of monoclinic $\alpha-\mathrm{SnF}_{2}$ show the following features: a rather molecular behavior ($\mathrm{Sn}_{4} \mathrm{~F}_{8}$ tetramers), a strong stereoactivity of the lone pairs, and a topological relationship to rutile. We report in this paper the crystal structure determination of two new crystalline phases β and $\gamma-\mathrm{SnF}_{2}$ and their topological relationships to rutile and cristobalite structures.

Experimental

1. Sample Preparation

$\gamma-\mathrm{SnF}_{2}$ is obtained by heating $\alpha-\mathrm{SnF}_{2}$ above $180^{\circ} \mathrm{C}$ (3) under vacuum or inert atmosphere; upon cooling it transforms to $\beta-\mathrm{SnF}_{2}$ below $67^{\circ} \mathrm{C}$ (second-order displacement transition). Both β - and $\gamma-\mathrm{SnF}_{2}$ are metastable below $\simeq 110^{\circ} \mathrm{C}$ and a small pressure is sufficient to induce the transformation to $\alpha-\mathrm{SnF}_{2}$. The $\alpha \rightarrow \gamma$ transition is first order, reconstructive, and single crystals of $\alpha-\mathrm{SnF}_{2}$ disintegrate on passing through this transition: no single crystals of β - or $\gamma-\mathrm{SnF}_{2}$ could be obtained. The room-temperature density of $\beta-\mathrm{SnF}_{2}$ determined by CCl_{4} displacement is 4.82 $\mathrm{g} / \mathrm{cm}^{3}$.

2. Unit-cell Parameters

The unit-cell parameters were obtained from X-ray powder data (at room temperature for $\beta-\mathrm{SnF}_{2}$ and at $80^{\circ} \mathrm{C}$ for $\gamma-\mathrm{SnF}_{2}$) by using a trial and error method developed by Louër and Louër (4). The 21 reflections of each powder pattern were used; the cubic, tetragonal, hexagonal, and orthorhombic

[^0]systems were tested with the restrictions
$-a, b, c \leqslant 25 \AA$,
$-\operatorname{ESD}(\theta)=0.22^{\circ}$,

- ESD (density) $=0.10 \mathrm{~g} / \mathrm{cm}^{3}$;
for both phases, a single solution was obtained, respectively orthorhombic and tetragonal for β - and $\gamma-\mathrm{SnF}_{2}$ with $Z=4$. The monoclinic system was also tested (5) with the restrictions

$$
\begin{aligned}
& -a, b, c<15 \AA, \\
& -\beta<110^{\circ}, \\
& -V<250 \AA^{3},
\end{aligned}
$$

but no solution was obtained. The refined cell parameters are given in Table I. De Wolff's criterion (6) for the reliability of powder pattern indexing gives figures of merit $M_{20}=27$ for $\beta-\mathrm{SnF}_{2}$ and $M_{20}=30$ for $\gamma-\mathrm{SnF}_{2}$, which are good guarantees for correct indexing.

3. Intensity Measurements

Data were collected as previously described (7). The sample of $\beta-\mathrm{SnF}_{2}$ was prepared by heating a carefully ground sample of $\alpha-\mathrm{SnF}_{2}$ at $190^{\circ} \mathrm{C}$ for 1 h and then quenching; the sample of $\beta-\mathrm{SnF}_{2}$ thus obtained was not reground in order to avoid a $\beta \rightarrow \alpha$ reconversion (3). The $\gamma-\mathrm{SnF}_{2}$ sample was prepared in situ in a hightemperature furnace adapted for X-ray diffraction (8) by heating to $190^{\circ} \mathrm{C}$ and
then cooling down to $80^{\circ} \mathrm{C}$; the experiment was run under dry nitrogen. Because of the high X-ray absorption of the aluminium windows of the high-temperature device, the accuracy of the data is somewhat lower for $\gamma-\mathrm{SnF}_{2}$ than for $\beta-\mathrm{SnF}_{2}$.

4. Structure Refinements

Both structures were determined by analogy to the structures of $\mathrm{GeF}_{2}(9)$ and high-pressure (HP) TeO_{2} (10) for $\beta-\mathrm{SnF}_{2}$ and with the paratellurite TeO_{2} (10) for $\gamma-\mathrm{SnF}_{2}$. This isotypism was suggested by the following points:

- the similar cell parameters (Table I);
- the same valence shell electronic configurations of $\mathrm{Sn}^{2+}, \mathrm{Ge}^{2+}$, and Te^{4+}, with an unshared electronic pair known to be stereoactive;
- the pseudo-body-centred tetragonal arrangement of the cations in GeF_{2} and TeO_{2} as in $\alpha-\mathrm{SnF}_{2}$ (hence, the difference between $\alpha-, \beta$-, and $\gamma-\mathrm{SnF}_{2}$ must be due only to the anions distribution);
- the observed X-ray reflections agree with the space groups given for TeO_{2} and $\mathrm{GeF}_{2}\left(P 2_{1} 2_{1} 2_{1}\right.$ (No. 19) for $\beta-\mathrm{SnF}_{2}$ and $P 4_{1} 2_{1} 2$ (No. 92) (or enantiomorphic $P 4_{3} 2_{1} 2$) for $\gamma-\mathrm{SnF}_{2}$; moreover, all the ($h k l$) reflections with 1 odd are very weak as they are in GeF_{2} and TeO_{2}, which comes from the

TABLE I
Unit-cell Parameters

	$\mathrm{HP}-\mathrm{TeO}_{2}{ }^{\text {a }}$	GeF_{2}	$\beta-\mathrm{SnF}_{2}$	$\boldsymbol{\gamma}-\mathrm{SnF}_{2}{ }^{\text {b }}$	$\mathrm{LP}-\mathrm{TeO}_{2}$
$a(\AA)$	4.6053 (6)	4.682 (1)	4.9889 (7)	5.0733 (9)	4.8052 (3)
$b(\AA)$	4.8557 (6)	5.178 (1)	5.1392 (6)	a	a
$c(\AA)$	7.5300 (10)	8.312 (1)	8.4777 (14)	8.4910 (33)	7.6021 (8)
$V\left(\AA^{3}\right)$	168.39 (7)	201.51 (11)	217.36 (9)	218.54 (16)	175.53 (4)
$\rho_{\text {obs }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$		3.7	4.82		
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	6.30	3.64	4.79	4.76	6.04
Reference	(10)	(9)	This work	This work	(10)

[^1]TABLE II
Final Atomic Coordinates

	$\beta-\mathrm{SnF}_{2}$	$\mathrm{GeF}_{2}(9)$	$\mathrm{HP}-\mathrm{TeO}_{2}(10)$	$\gamma-\mathrm{SnF}_{2}\left(80^{\circ} \mathrm{C}\right)$	$\mathrm{LP}-\mathrm{TeO} 2(10)$
x	$0.274(5)$	$0.266(4)$	$0.274(2)$	$0.011(30)$	$0.025(1)$
y	$0.023(7)$	$0.008(5)$	$0.012(3)$	$0.011(30)$	$0.025(1)$
z	$0.130(5)$	$0.131(3)$	$0.117(2)$	0.0	0
B	0.5^{a}	b	0	$2.9(1.1)$	0
x	$0.541(6)$	$0.528(24)$	$0.549(2)$	$0.102(22)$	$0.139(1)$
y	$0.163(5)$	$0.082(24)$	$0.120(2)$	$0.305(18)$	$0.262(1)$
z	$0.996(3)$	$0.982(18)$	$0.940(1)$	$0.171(13)$	$0.187(1)$
B	0.8^{a}	b	$1.08(16)$	0	(3.9)
x	$0.378(4)$	$0.433(18)$	$0.406(2)$		$0.63(15)$
y	$0.202(2)$	$0.246(29)$	$0.234(2)$		
z	$0.385(4)$	$0.279(18)$	$0.333(1)$		
B	0.8^{a}	b	$1.08(16)$		
Space group	$P 2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 4_{1} 2_{1} 2$	$\left(P 4_{3} 2_{1} 2\right)$
				$\left(P 4_{3} 22_{1} 2\right)$	

${ }^{a}$ Not refined.
${ }^{b}$ Anisotropic thermal parameters used.
existence of a cationic tetragonal sublattice with parameter $c^{\prime}=c / 2$);

- the $\beta-\mathrm{SnF}_{2}$ space group is a subgroup of order 2 of the $\gamma-\mathrm{SnF}_{2}$ space group in agreement with the second-order nature of the $\beta \rightleftarrows \gamma$ reversible transition (3);
- a second barmonic generation test on $\beta-\mathrm{SnF}_{2}$ gives a weak signal which indicates a noncentrosymmetrical space group.

The structure refinements were carried out with the following conditions:

- For $\beta-\mathrm{SnF}_{2}: 51(h k l)$ reflections/21 measured intensities; three kinds of atoms $\mathrm{Sn}, \mathrm{F}(1), \mathrm{F}(2)$ in the general position (4a); final discrepancy factors $R=7.5 \%$ and $R_{\mathrm{w}}=$ 10.8%.
- For $\gamma-\mathrm{SnF}_{2}: 27$ (hkl) reflections/15 measured intensities; two kinds of atoms Sn in ($x x 0$) and F in ($x y z$); final discrepancy factors $R=8.4 \%$ and $R_{\mathrm{w}}=12.5 \%$.

In both cases, we used the Cromer-Waber scattering factors (11) and the atoms were first positioned as in GeF_{2} and TeO_{2}. The
least-squares refinement was performed with a local program (12).

The final atomic coordinates given in Table II are not very different from those of GeF_{2} and TeO_{2}. It is worth noting that there are eight possible positions for the origin of the unit cell in $P 2_{1} 2_{1} 2_{1}$ and the crystal structures of $\mathrm{GeF}_{2}(9)$ and $\mathrm{HP}-\mathrm{TeO}_{2}$ (10) were solved with different origins; all the results given in this paper refer to the high-pressure TeO_{2} cell ${ }^{1}$.

Description of the Structures

1. Stereochemistry of $\mathbf{S n}^{2+}$

As for $\alpha-\mathrm{SnF}_{2}$ (2), a good description of the environment of Sn^{2+} is obtained by the following two models.
(a) the Galy-Andersson lone-pair model (13) which is based on the electrostatic repulsion theory of Gillespie and Nyholm (14). The activity of the lone pair E can be shown by comparing the molecular volume per anion

$$
{ }^{1}(x, y, z)_{\mathrm{GeF}_{2}}=(1 / 2-x, y, z)_{\mathrm{TeO}_{2}} .
$$

between different Sn^{2+} - and Sn^{4+}-containing structures. For this, two volumes must be defined:

$$
\begin{aligned}
V_{1}= & \frac{\text { molecular volume }}{\text { number of anions in the molecule },} \\
V_{2}= & \frac{\text { molecular volume }}{\text { number of anions }} \\
& + \text { lone pairs in the molecule } .
\end{aligned}
$$

According to our previous study (2), V_{1} ranges from 16 to $40 \AA^{3}$ while V_{2} is almost constant and equal to $16-20 \AA^{3}$. For the present structures, one obtained $V_{1}=$ $27.2 \AA^{3}(\beta)$ and $27.3 \AA(\gamma)$ while $V_{2}=$ $18.1 \AA^{3}(\beta)$ and $18.2 \AA^{3}(\gamma)$, clearly demonstrating that the tin lone pair (E) is still active in β - and $\gamma-\mathrm{SnF}_{2}$ and requires a volume comparable to that of a fluoride anion.
The interatomic distances are given in Table III; in $\beta-\mathrm{SnF}_{2}$, tin atoms have an octahedral coordination $\mathrm{SnF}_{5} E$ (one short axial bond and four intermediate equatorial bonds), but, in $\gamma-\mathrm{SnF}_{2}$, one observes a triangular bipyramid $\mathrm{SnF}_{4} E$ (two short equatorial and two intermediate axial $\mathrm{Sn}-\mathrm{F}$ bonds). The unusual $\mathrm{SnF}_{5} E$ octahedron (Fig. 1) was first observed in $\alpha-\mathrm{SnF}_{2}(1,2)$ and corresponds to an $s p^{3} d^{2}$ hybridization; the $\mathrm{SnF}_{4} E$ triangular bipyramid (Fig. 2) is more common in stannous compounds (see $\mathrm{Sn}_{2} \mathrm{OF}_{2}$ (15) for instance) and is also observed in paratellurite but with shorter bond lengths.

The geometrical characteristics of the $\mathrm{SnF}_{5} E$ octahedron and $\mathrm{SnF}_{4} E$ bipyramid have been calculated according to Galy's model by using a local program (3) and are given in Tables IV and V. Although $\beta-\mathrm{SnF}_{2}$, GeF_{2}, and $\mathrm{HP}-\mathrm{TeO}_{2}$ are isostructural, the coordination polyhedra around the cation are rather different:
-in $\beta-\mathrm{SnF}_{2}$: $\mathrm{SnF}_{5} \mathrm{E}$ octahedron $(E+\mathrm{F}+$ 4F);

TABLE III Interatomic Distances ${ }^{a}$

	$\beta-\mathrm{SnF}_{2}$	$\gamma-\mathrm{SnF}_{2}$	
$\mathrm{Sn}_{1}-\mathrm{F}_{11}$	$1.89(3)$	$\mathrm{Sn}_{1}-\mathrm{F}_{1}$	$2.13(15)$
$\mathrm{Sn}_{1}-\mathrm{F}_{14}$	$2.26(3)$	$\mathrm{Sn}_{1}-\mathrm{F}_{2}$	$2.13(15)$
$\mathrm{Sn}_{1}-\mathrm{F}_{22}$	$2.40(2)$	$\mathrm{Sn}_{1}-\mathrm{F}_{6}$	$2.32(18)$
$\mathrm{Sn}_{1}-\mathrm{F}_{21}$	$2.41(4)$	$\mathrm{Sn}_{1}-\mathrm{F}_{7}$	$2.32(18)$
$\mathrm{Sn}_{1}-\mathrm{F}_{23}$	$2.49(3)$	$\mathrm{Sn}_{1}-\mathrm{F}_{3}$	$3.27(13)$
Other		$\mathrm{Sn}_{1}-\mathrm{F}_{4}$	$3.27(13)$
distances $>$	$3.50 \AA$	$\mathrm{Sn}_{1}-\mathrm{F}_{6}^{\prime}$	$3.35(18)$
$\mathrm{F}_{11}-\mathrm{Sn}_{1}$	$1.89(3)$	$\mathrm{Sn}_{1}-\mathrm{F}_{7}^{\prime}$	$3.35(18)$
$\mathrm{F}_{11}-\mathrm{Sn}_{4}$	$2.26(3)$	Other^{2}	
$\mathrm{~F}_{21}-\mathrm{Sn}_{2}$	$2.40(2)$	distances	$>3.89 \AA$
$\mathrm{~F}_{21}-\mathrm{Sn}_{1}$	$2.41(4)$	$\mathrm{F}_{1}-\mathrm{Sn}_{1}$	$2.13(15)$
$\mathrm{F}_{21}-\mathrm{Sn}_{3}$	$2.49(3)$	$\mathrm{F}_{1}-\mathrm{Sn}_{5}$	$2.32(18)$
		$\mathrm{F}_{1}-\mathrm{Sn}_{3}$	$3.27(13)$
		$\mathrm{F}_{1}-\mathrm{Sn}_{5}^{\prime}$	$3.35(18)$

${ }^{a}$ The number of each atom is defined as follows:
(a) In $\beta-\mathrm{SnF}_{2}$:
$\mathrm{Sn}_{j}(j=1,4)$ for the cations; $\mathrm{F}_{i j}(i=1,2 ; j=1,4)$ for the anions.
j is the number of each equivalent position $\left(P 2_{1} 2_{1} 2_{1}\right)$:
$j=1(x, y, z)$,
$j=2(1 / 2-x, \bar{y}, 1 / 2+z)$,
$j=3(1 / 2+x, 1 / 2-y, \bar{z})$,
$j=4(\bar{x}, 1 / 2+y, 1 / 2+y, 1 / 2-z)$.
(b) In $\gamma-\mathrm{SnF}_{2}: \mathrm{Sn}_{i}$ and F_{i}, i being the number of each equivalent position ($P 41_{1} 2_{1}$):
$i=1(x, y, z)$,
$i=3(\bar{x}, \bar{y}, 1 / 2+z)$
$i=5(1 / 2-y, 1 / 2+x, 1 / 4+z)$,
$i=7(1 / 2+y, 1 / 2-x, 3 / 4+z)$,
$y=2(y, x, \bar{z})$,
$y=4(y, x, 1 / 2-z)$
$y=6(1 / 2-x, 1 / 2+y, 1 / 4-z)$,
$y=8(1 / 2+x, 1 / 2-y, 3 / 4-z)$.

Fig. 1. $\mathrm{SnF}_{5} E$ octahedron in $\beta-\mathrm{SnF}_{2}$.

Fig. 2. $\mathrm{SnF}_{4} E$ triangular bipyramid in $\gamma-\mathrm{SnF}_{2}$.

TABLE IV
Geometrical Characteristics of the $\operatorname{SnF}_{5} \mathrm{E}$ OCtahedron in α - and $\beta-$ SnF $_{2}$ and $\mathrm{TeO}_{5} \mathrm{E}$ Octahedron in TeO_{2} at 19.8 kbar

Value a	$\alpha-\mathrm{SnF}_{2}$	$\beta-\mathrm{SnF}_{2}$	$\mathrm{HP}^{2}-\mathrm{TeO}_{2}(10)$
$a_{1}(\AA)$	3.25	3.38	3.11
$a_{2}(\AA)$	2.80	2.91	2.81
$d_{1}(\AA)$	2.34	2.39	2.19
$d_{2}(\AA)$	2.05	1.89	1.91
$d_{M-E}(\AA)$	1.17	1.40	1.58
$\psi\left({ }^{\circ}\right)$	79.1	85	86.5

${ }^{a}$ All these geometrical values are defined in Ref. (13) (octahedral model).

- in $\mathrm{HP}-\mathrm{TeO}_{2}: \mathrm{TeO}_{5} E$ polyhedron intermediate between octahedron and trigonal bipyramid ($E+4 \mathrm{O}+\mathrm{O}$);
- in GeF_{2} : GeF4E polyhedron intermediate between trigonal bipyramid and tetrahedron $(E+3 F+F)$.
(b) Brown's valence model (19). Tin atoms in $\beta-\mathrm{SnF}_{2}$ have the unusual \mathscr{D} configuration (one strong and four intermediate bonds) previously observed in α SnF_{2}; in $\gamma-\mathrm{SnF}_{2}$, the more common \mathscr{B} configuration is observed. In both cases, and
in agreement with Brown's model, the polyhedron distortion is such that weak bonds occur opposite strong bonds and bonds of intermediate strength opposite each other.

However, if all $\mathrm{Sn}-\mathrm{F}$ distances less than $3.4 \AA$ in $\gamma-\mathrm{SnF}_{2}$ are taken into account, the $\mathrm{SnF}_{4} E$ bipyramid does not result from the distortion of an octahedron (as assumed in Brown's model) but from a square antiprism (Fig. 3). Gillespie has shown in his book (20) that, among the six possible $M \mathrm{X}_{8}$ polyhedra, it is the square antiprism which leads to the

TABLE V
Geometrical Characteristics of the Triangular Bipyramid in $\gamma-\mathrm{SnF}_{2}, \mathrm{Te} \mathrm{O}_{2}$ and Some Other Stannous Flouride Compounds

Value ${ }^{\text {a }}$	$\boldsymbol{\gamma}-\mathrm{SnF}_{2}$	$\begin{gathered} \mathrm{TeO}_{2} \\ (10) \end{gathered}$	$\begin{gathered} \mathrm{Sn}_{2} \mathrm{OF}_{2}(\mathrm{Sn}(2)) \\ (15) \end{gathered}$	$\begin{gathered} \mathrm{KsnF}_{3}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O} \\ (16) \end{gathered}$	$\begin{gathered} \mathrm{NaSn}_{2} \mathrm{~F}_{5} \\ (17) \end{gathered}$	$\mathrm{Na}_{4} \mathrm{Sn}_{3} \mathrm{~F}_{10}(18)$	
						$\mathrm{Sn}(1)$	$\mathrm{Sn}(2)$
$a_{1}(\AA)$	3.25	2.904	2.632	2.80	2.91	2.83	2.78
$a_{2}(\AA)$	3.45	2.703	3.079	2.81	2.77	2.75	2.83
$k=a_{1} / a_{2}$	0.95	1.07	0.85	0.99	1.05	1.03	0.98
$d_{1}(\AA)$	2.13	1.919	2.106 (Sn-O)	2.02	2.07	2.04	2.04
$d_{2}(\AA)$	2.37	2.087	2.388 (Sn-F)	2.27	2.37	2.32	2.26
$l(\AA)$	4.46	4.134	4.759	4.43	4.50	4.43	4.44
$d_{M-E}(\AA)$	1.44	1.26	0.635	0.96	1.09	1.00	0.91
$\alpha\left({ }^{\circ}\right)$	140	163.9	170.5	155.1	142	146.3	158.3
$\beta\left({ }^{(}\right)$	99	98.3	77.3	87.5	89	87.8	85.7
$\theta\left({ }^{\circ}\right)$	74	53.1	70.7	57.8	40	45.3	59
$\psi\left({ }^{\circ}\right)$	74	53.1	70.7	57.8	62	61.4	59

[^2]

Fig. 3. Square antiprism distorted by the lone pair in $\gamma-\mathrm{SnF}_{2}$.
weakest $\boldsymbol{X}-\boldsymbol{X}$ electrostatic repulsions; the possible distortions of both the cube and the square antiprism by a lone-pair were described by Orgel (21) (Fig. 4), but only distortions about a fourfold axis were known. for insance, in SnO or PbO (22) for the cube (Fig. 4b) and in $\mathrm{PbCu}(\mathrm{OH})_{4} \mathrm{Cl}_{2}$ (23) for the square antiprism (Fig. 4d). The polyhedron observed in $\gamma-\mathrm{SnF}_{2}$ (Figs. 3 and 4e) is an example of a distortion which does not keep the fourfold axis; closely related polyhedra are observed in SnFCl (24) and $\alpha-\mathrm{PbF}_{2}$. Therefore, the size of Sn^{2+} cation is such that it can accommodate a coordination deriving either from an octahedron (as outlined by

Fig. 4. Structures obtained by distorting a cube, (a) \rightarrow (b), and a square antiprism, (c) \rightarrow (d), about a fourfold axis, described by Orgel (21); distortion occurring in $\gamma-\mathrm{SnF}_{2}$, (c) \rightarrow (e).

Brown) or from a cube; the latter conclusion is supported by the existence of $M \mathrm{SnF}_{4}$ compounds ($M=\mathrm{Pb}, \mathrm{Ba}, \mathrm{Sr}$) whose structures are related to the fluorite type (25).

2. Fluorine Stereochemistry

In $\beta-\mathrm{SnF}_{2}, \mathrm{GeF}_{2}$ and $\mathrm{HP}-\mathrm{TeO}_{2}$, there are two kinds of anions: one is a bridging anion (shared by two cations) while the coordination of the second kind depends on the size of the cation. It is in a threefold coordination in $\beta-\mathrm{SnF}_{2}$ (Fig. 5), in a bridging position in $\mathrm{HP}-\mathrm{TeO}_{2}$, but, in GeF_{2}, this second anion is almost terminal (bonded to only one cation).

In the tetragonal structure $\left(\gamma-\mathrm{SnF}_{2}\right)$ all anions are in a bridging position.

3. Topological relationships

(a) Cationic lattice. In the three structures $\alpha-, \beta$ - and $\gamma-\mathrm{SnF}_{2}$, tin atoms have a pseudo-body-centred arrangement which also exists in TeO_{2} and GeF_{2}; cation displacements from ideal positions are small:

$$
\begin{aligned}
& \text { —in } \beta-\mathrm{SnF}_{2} \quad 0.024 \mathbf{a} / 0.023 \mathbf{b} / 0.005 \mathbf{c} \\
& \text { - in } \mathrm{HP}-\mathrm{TeO}_{2} 0.016 \mathbf{a} / 0.008 \mathbf{b} / 0.006 \mathbf{c} \\
& \text { —in } \mathrm{GeF}_{2} \quad 0.024 \mathbf{a} / 0.005 \mathbf{b} / 0.008 \mathbf{c} \\
& \text {-in } \gamma-\mathrm{SnF}_{2} \quad 0.01 \mathbf{a} / 0.01 \mathbf{b} / \\
& \text { no displacement along } \mathbf{c} \\
& \text {-in LP-TeO }{ }_{2} 0.03 \text { a/0.03 b/ } \\
& \text { no displacement along } \mathbf{c}
\end{aligned}
$$

This distortion is visualized in Fig. 6 which compares β - and $\gamma-\mathrm{SnF}_{2}$ to rutile.
(b) Polyhedra linkage. The $\mathrm{SnF}_{5} \mathrm{E}$ octahedra in $\beta-\mathrm{SnF}_{2}$ share one vertex which leads

Fig. 5. Coordination of the two kinds of fluorine in $\beta-\mathrm{SnF}_{2}$.

Fig. 6. Distortion of the pseudo-body-centered arrangement of tin atoms in β - and $\gamma-\mathrm{SnF}_{2}$.
to a three-dimensional framework: each $F(1)$ is shared between two octahedra while $F(2)$ is common to three octahedra as in the rutile structure. This gives rise to rows of octahedra running along the \mathbf{c} axis (Fig. 7); this projection of the SnO_{2} and $\beta-\mathrm{SnF}_{2}$ structures in the plane defined by the directions [110] and [001] clearly shows the role of lone pairs in the distortion of the structure and the reason for doubling the \mathbf{c} axis.

These rows of octahedra running along the c axis no longer exist in γ - SnF_{2}. Instead the $\mathrm{SnF}_{4} E$ bipyramids are linked to each other in such a way that they form $\mathrm{Sn}_{6} \mathrm{~F}_{6}$ rings similar to the $\mathrm{Si}_{6} \mathrm{O}_{6}$ rings observed in the cristobalite structure; each cation is common to six rings and each anion to four rings. This comparison between high-temperature β cristobalite (space group $I \overline{4} 2 d$ (26)), lowtemperature α-cristobalite (space group $P 4_{1} 2_{2} 2$ (27)), and $\gamma-\mathrm{SnF}_{2}$ (space group $P 4{ }_{1} 22$) is presented in Figs. 8 and 9: the transition from β - to α-cristobalite can be

Fig. 7. Rows of octahedra along \mathbf{c} in $\beta-\mathrm{SnF}_{2}$ and SnO_{2} (rutile type).

Fig. 8. $\mathrm{Si}_{6} \mathrm{O}_{6}$ rings in β - and α-cristobalite and $\mathrm{Sn}_{6} \mathrm{~F}_{6}$ rings in $\gamma-\mathrm{SnF}_{2}$. The z coordinate of each atom is indicated. The length of each diagonal is

- in β-cristobalite: $\mathrm{AD}=\mathrm{BE}=\mathrm{CF}=5.91 \AA$;
- in α-cristobalite: $\mathrm{AD}=6.25 \AA, \quad \mathrm{BE}=5.78 \AA$, $\mathrm{CF}=5.40 \AA$;
-in $\gamma-\mathrm{SnF}_{2}: \mathrm{AD}=8.20 \AA, \quad \mathrm{BE}=7.12 \AA, \mathrm{CF}=$ $4.10 \AA$.
visualized as a lengthening of the $A D$ diagonal (Fig. 8) and a shortening of CF; the same distortion occurs in $\gamma-\mathrm{SnF}_{2}$ but to a greater extent.
(c) Anionic lattice. The rutile structure can be described from the hexagonal close packing of the anions (28) and the same description also holds for $\beta-\mathrm{SnF}_{2}$ and HPTeO_{2} with the difference being that the close-packed layers contain both anions and lone pairs (the same fluorine lone-pairs packing is observed in $\alpha-\mathrm{SnF}_{2}$ (2)). This hexagonal close packing of anions disappears in $\gamma-\mathrm{SnF}_{2}$ which exhibits as paratellurite the same packing of anions as α - and β-cristobalite: an open anionic network with vacancies at the center of the rings. A strong

Fig. 9. Conformation of $\mathrm{Si}_{6} \mathrm{O}_{6}$ and $\mathrm{Sn}_{6} \mathrm{~F}_{6}$ rings in β-cristobalite and $\gamma-\mathrm{SnF}_{2}$.
increase in compactness ($\sim 46 \%$) occurs at the cristobalite \rightarrow stishovite (high-pressure phase of SiO_{2}, of rutile structure (29-32)) transition, resulting from the transformation of an open to a compact oxygen atom lattice. No increase of density is observed in the $\gamma \rightarrow \beta$ transition of SnF_{2} or paratellurite $\rightarrow \mathrm{HP}-\mathrm{TeO}_{2}$. However, a similar environment of anions is observed in both structures:

- in cristobalite, $\gamma-\mathrm{SnF}_{2}$, each anion (O or F) is surrounded by 6 anions (5 in paratellurite)
-in the rutile type; each anion is surrounded by 12 anions, but if one considers the lone pairs E as anions, in $\gamma-\mathrm{SnF}_{2}$ and paratellurite, each anion (O, F, or E) is surrounded by 10 or 14 anions; then their structures are as compact as that of $\beta-\mathrm{SnF}_{2}$ and $\mathrm{HP}-\mathrm{TeO}_{2}$, but with a different packing of anions; this explains why no increase in compactness occurs at the transitions $\gamma \rightarrow$ $\beta-\mathrm{SnF}_{2}$ and paratellurite $\rightarrow \mathrm{HP}-\mathrm{TeO}_{2}$.

Furthermore, the presence of lone pairs inside the rings in $\gamma-\mathrm{SnF}_{2}$ and TeO_{2} which do not exist in the analogous cristobalite type prevents formation of insertion compounds $A B X_{2}$ (KFeO_{2} type) by double substitution as observed in cristobalite $\left(\mathrm{Si}^{4+} / \mathrm{K}^{+} \mathrm{Fe}^{3+}\right)$.
(d) Cristobalite-rutile GeF Transformations. Both the tetrahedral and the octahedral coordinations of Si^{4+} and Ge^{4+} are well known. A mechanism of transformation of SiO_{2} from cristobalite to rutile structures involving rotation of tetrahedra was recently proposed $(33,34)$. The crystal structures of SnF_{2} and TeO_{2} can be treated as intermediate stages of this transformation, which can be divided into two parts: first a cationic rearrangement, the polyhedra remaining tetrahedra; then, movements of anions involving the transformation of tetrahedra into octahedra.

These transformations are explained in Fig. 10 and 11. The translation of cations is shown in Fig. 10 and 6; this motion takes place in the (\mathbf{a}, \mathbf{b}) plane; the vectors of translation of the four cations of the unit cell are the following: \mathbf{T}_{1}^{\prime} and $\mathbf{T}_{1}=(0,0,0), \mathbf{T}_{2}^{\prime}$ and $\mathbf{T}_{2}=(x, 0,0), \mathbf{T}_{3}^{\prime}$ and $\mathbf{T}_{3}=(0, x, 0), \mathbf{T}_{4}^{\prime}$ and $\mathbf{T}_{4}=(x, x, 0)$, with $x=-0.10$ from β to $\alpha-$ cristobalite, and -0.40 from α-cristobalite to $\gamma-\mathrm{SnF}_{2}$.

This first part of the cristobalite \rightarrow rutile transformation involves a translation of the tetrahedra which are progressively distorted ($\mathrm{SnF}_{4} E$ and $\mathrm{TeO}_{4} E$ bipyramids can be

Fig. 10. Movement of the cations in the (\mathbf{a}, \mathbf{b}) plane from β-cristobalite to $\gamma-\mathrm{SnF}_{2}$.

a β-cristobalite (iū2d)

c $\gamma-\mathrm{SnF}_{2}\left(\mathrm{PL} \mathrm{Cl}_{12}\right.$)

f SnO_{2} (Rutile Type $-\mathrm{P}_{2} / \mathrm{mnm}$)

Fig. 11. Cristobalite \rightarrow rutile and rutile $\rightarrow \mathrm{GeF}_{2}$ transformations (a) β-cristobalite, (b) α-cristobalite, (c) $\gamma-\mathrm{SnF}_{2}$ (d) TeO_{2} at 19.8 kbar , (e) $\beta-\mathrm{SnF}_{2}$, (f) SnO_{2}, (g) GeF_{2}.
considered as tetrahedra strongly distorted by the lone pair E) and a distortion of $\mathrm{Si}_{6} \mathrm{O}_{6}$ and $\mathrm{Sn}_{6} \mathrm{~F}_{6}$ rings (Figs. 11a-c).

In the second part of the transformation, only motions of anions occur, the cationic lattice remaining a pseudo-body centered one as in $\gamma-\mathrm{SnF}_{2}$, while the tetrahedra are progressively transformed to octahedra (Fig. 11c-f). The following stages are observed.
$-\gamma-\mathrm{SnF}_{2}$ and paratellurite (Fig. 11c): bipyramid $\mathrm{SnF}_{4} E$ and $\mathrm{TeO}_{4} E$; bridging anions.
$-\mathrm{TeO}_{2}$ at 19.8 kbar (Fig. 11d): intermediate between $\mathrm{TeO}_{4} E$ bipyramid and $\mathrm{TeO}_{5} E$ octahedron; one oxygen is still bridging, the other one is in $2+1$ coordination; $\mathrm{Te}_{6} \mathrm{O}_{6}$ rings begin to be divided into two parts.
$-\beta-\mathrm{SnF}_{2}$ (Fig. 11e): is $\mathrm{SnF}_{5} E$ octahedron; one fluorine is still bridging, the other one is being shared between three Sn atoms; the rings have disappeared; there are rows of octahedra as in rutile but they share only a vertex:
$-\mathrm{SnO}_{2}$ (Fig. 11f): SnO_{6} octahedra; all the oxygen atoms are in a threefold coordination site.

The rutile $\rightarrow \mathrm{GeF}_{2} \quad$ transformation involves only a motion of anions which depends on the size of the cation. From SnO_{2} to $\beta-\mathrm{SnF}_{2}$, the bonds indicated by crosses (Fig. 11f) disappear and result in a displacement of anions as indicated by the arrows. From $\beta-\mathrm{SnF}_{2}$ to high-pressure TeO_{2}, and from high-pressure TeO_{2} to GeF_{2}, the bonds indicated by crosses disappear (Figs. 11 e and 11 d) and result in the chain polymer structure of GeF_{2} (Fig. 11g). In this structure, the $\mathrm{GeF}_{3} E$ tetrahedra are linked by sharing bridging fluorines. The stability of this structure in the solid state is due to van der Waals bonds between neighboring chains, in agreement with the low melting point $\left(110^{\circ} \mathrm{C}\right)(35)$.

Acknowledgment

We are very grateful to D. Louër, Laboratoire de Cristallochimie, Rennes, for supplying us with his automatic indexing programs and for stimulating discussions.

References

1. R. C. McDonald, H. Ho-Kuen Hau, and K. Eriks, Inorg. Chem. 15, 4 (1976).
2. G. Denes, J. Pannetier, J. Lucas, and Le Marouille, J. Solid State Chem. 30, 335 (1979).
3. G. Denes, Thèse d'Etat, Rennes (1978).
4. D. LOUËr and M. LoUËr, J. Appl. Cryst. allogr. 5, 271 (1972).
5. D. LOUËR AND Pivol, A Fortran IV Program for Automatic Indexing of Powder Patterns in Monoclinic System," unpublished.
6. P. M. De Wolff, J. Appl. Crystallogr. 1, 108 (1968).
7. G. Funteneau, H. L'Helguualch, and J. LuCAs, Mater. Res. Bull. 12, 25 (1977).
8. P. Barret, N. Gerard, and G. WatelleMARION, Bull. Soc. Chim. Fr. 8, 3172 (1968).
9. J. Trotter, M. Akhtar, and N. Bartlett, J. Chem. Soc. Abstr. 30.
10. T. G. Worlton and R. A. Beyerlein, Phys. Rev. B 12, 1899 (1975).
11. D. T. Cromer and J. T. Waber, Acta Crystallogr. 18, 114 (1965).
12. H. L'Helgoualch, G. Fontenau and J. Pannetier, 'Maryse' A Structure Refinement Program for Powder Data," unpublished.
13. J. Galy, G. Meunier, S. Andersson, And A. Aström, J. Solid State Chem. 13, 142 (1975).
14. R. J. Gillespie and R. S. Nyholm, Quart. Rev. Chem. Soc. 11, 339 (1957).
15. B. Darriet and J. Galy, Acta Crystallogr. Sect. B 33, 1489 (1977).
16. G. Bergherhoff, L. Goost, and E. Schultze-Rhonof, Acta Crystallogr. Sect. B 24, 803 (1968).
17. R. R. McDonald, A. C. Larson, and D. T. Cromer, Acta Crystallogr. 17, 1104 (1964).
18. G. Bergheroff and L. Goost, Acta Crystallogr. Sect. B 26, 19 (1970).
19. I. D. Brown, J. Solid State Chem. 11, 214 (1974).
20. R. J. Gillespie, "Molecular geometry," Van Nostrand Reinhold, London (1972).
21. L. E. Orgel, J. Chem. Soc., 3815 (1959).
22. F. Hulliger in "Structural Chemistry of Layertype Phases" (F. Levy Ed.,) Reidel, Dordrecht (1976).
23. A. Byström and K. A. Wilhelmi, Ark. Kemi 2, 397 (1950).
24. C. Geneys, S. Vilminot, and L. Cot, Acta Crystallogr. Sect. B 32, 3199 (1976).
25. G. Denes, J. Pannetier, and J. lucas, C. R. Acad. Sci. 280, 835 (1975).
26. A. F. Wright and A. J. Leadbetter, Phil. Mag. 31, 1391 (1975).
27. D. R. Peacor, Z. Kristallogr. A 96, 274 (1973).
28. A. F. Wells, "Structural Inorganic Chemistry," Clarendon Press, Oxford (1975).
29. W. H. BaUR, Acta Crystallogr. 9, 1515 (1956).
30. S. M. Stishov and N. V. Belov, Dokl. Akad. Nauk SSR 143, 951 (1962).
31. A. Presinger, Naturwissenschaften 49, 345 (1962).
32. A. W. Baur and A. A. Khan, Acta Crystallogr. Sect. B 27, 2133 (1971).
33. R. Fischer and J. Zemann, Tchermaks Min. Petrol. Mitt. 22, 1 (1975).
34. M. O'Keeke and B. G. Hyde, Acta Crystallogr. Sect. B 22, 2923 (1976).
35. N. Barti.ftt and K. C. Yu, Canad. J. Chem. 39, 80 (1961).

[^0]: 0022-4596/80/070001-11 \$02.00/0
 Copyright © 1980 by Academic Press, Inc.
 All rights of reproduction in any form reserved

[^1]: ${ }^{a}$ At 19.8 kbar.
 ${ }^{b}$ at $80^{\circ} \mathrm{C}$.

[^2]: ${ }^{a}$ All these geometrical values are defined in Ref. (13) (bipyramidal model). $l=$ axial anion-anion distance.

